
A Formal Proof of the Independence of the
Continuum Hypothesis

Jesse Michael Han
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA, USA

jessemichaelhan@gmail.com

Floris van Doorn
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA, USA
fpvdoorn@gmail.com

Abstract
We describe a formal proof of the independence of the con-
tinuum hypothesis (CH) in the Lean theorem prover. We use
Boolean-valued models to give forcing arguments for both
directions, using Cohen forcing for the consistency of ¬CH
and a 𝜎-closed forcing for the consistency of CH.

CCS Concepts • Theory of computation → Logic and
verification; Type theory.

Keywords Interactive theorem proving, formal verifica-
tion, continuum hypothesis, forcing, Lean, set theory, ZFC,
Boolean-valued models

ACM Reference Format:
JesseMichael Han and Floris van Doorn. 2020. A Formal Proof of the
Independence of the Continuum Hypothesis. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP ’20), January 20–21, 2020, New Orleans, LA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3372885.
3373826

1 Introduction
The continuum hypothesis (CH) states that there is no car-
dinality between 𝜔 , the smallest infinite cardinal and 𝔠, the
cardinality of the continuum. It was posed by Cantor [6] in
1878 and was the first problem on Hilbert’s list of twenty-
three unsolved problems in mathematics. Gödel [14] proved
in 1938 that CH was consistent with Zermelo-Fraenkel set
theory with the axiom of choice (ZFC). He conjectured that
CH was independent, i.e. neither provable nor disprovable,
from ZFC. This remained an open problem until 1963, when
Paul Cohen developed forcing [8, 9] and used it to prove

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’20, January 20–21, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7097-4/20/01. . . $15.00
https://doi.org/10.1145/3372885.3373826

the consistency of ¬CH with ZFC, completing the indepen-
dence proof. This work started modern set theory, and for
his invention of forcing, Cohen was awarded a Fields medal.

The independence of CH has also been an open formaliza-
tion problem. Since 2005, FreekWiedijk has maintained a list
(Formalizing 100 theorems [47]) of one hundred problems for
formalized mathematics, with the independence ofCH as the
24th. As of 2019, it was one of the six remaining problems.
In this paper we describe the successful completion of

the Flypitch project1 (Formally proving the independence
of the continuum hypothesis). We formalize forcing with
Boolean-valued models. We use Cohen forcing to construct
a Boolean-valued model of ZFC where CH is false, and a
𝜎-closed forcing to construct a Boolean-valued model of
ZFC where CH is true. We then combine this with a deep
embedding of first-order logic, including a proof system and
the axioms of ZFC, to verify that CH is neither provable nor
disprovable from ZFC.

Our formalization2 uses the Lean 3 theorem prover, build-
ing on top of mathlib [29]. Lean is an interactive proof assis-
tant under active development at Microsoft Research [10, 44].
It has a similar metatheory to Coq, adding definitional proof
irrelevance, quotient types, and a noncomputable choice
principle. Our formalization makes as much use of the ex-
pressiveness of Lean’s dependent type theory as possible,
using constructions which are impossible or unwieldy to en-
code in HOL, let alone ZF. The types of cardinals and ordinals
inmathlib, which are defined as proper equivalence classes of
(well-ordered) types, live one universe level higher than the
types used to construct them, and our models of set theory
require as input an entire universe of types. Our encoding
of first-order logic also uses parameterized inductive types
which ensure that type-correctness implies well-formedness,
eliminating the need for separate well-formedness proofs.
The method of forcing with Boolean-valued models was

developed by Solovay and Scott [38, 40] as a simplification of
Cohen’s method. Some of these simplifications were incor-
porated by Shoenfield [43] into a general theory of forcing
using partial orders, and it is in this form that forcing is usu-
ally practiced. While both approaches have essentially the
same mathematical content (see e.g. [25, 26, 30]), there are
1https://flypitch.github.io
2https://github.com/flypitch/flypitch

https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3372885.3373826
https://flypitch.github.io
https://github.com/flypitch/flypitch

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

several reasons why we chose to use Boolean-valued models.
The main reason is the directness of forcing with Boolean-
valued models, which bypasses the need for the Löwenheim-
Skolem theorems, Mostowski collapse, countable transitive
models, or genericity considerations for filters. The theory of
forcing with Boolean-valued models also cleanly splits into
several parts, allowing us to formalize different components
in parallel (e.g. a general theory of Boolean-valued seman-
tics, a library for calculations in complete Boolean algebras,
a construction of Boolean-valued models of set-theory) and
later recombine them. In particular, our library for Boolean-
valued semantics for first-order logic is completely general
and can be reused for other formalization projects. Finally,
our Boolean-valued models of set theory are inductive types
generalizing the Aczel encoding of set theory into depen-
dent type theory; consequently, the automatically-generated
induction principle is ∈-induction, leading to cleaner proofs.

1.1 Proof Outline
The usualmethod to show that a statement is unprovable is to
construct a model where the statement is false, and apply the
soundness theorem; our method is similar, except that we use
Boolean-valued semantics and a Boolean-valued soundness
theorem (see Section 3). The difference between Boolean-
valued models and ordinary models is that the truth values in
a Boolean-valued model M live in a complete Boolean algebra
(B, ⊓, ⊔,

d
,

⊔
,⊥,⊤). If we can construct two Boolean-

valued models of ZFC, one where CH is true ⊤, and one
where CH is false ⊥, then by the Boolean-valued soundness
theorem, CH is independent from ZFC.
For any complete Boolean algebra B we implement the

set-theoretic universe 𝑉 B of B-valued sets by generalizing
the Aczel encoding of set theory (called pSet, see Section 4),
obtaining a type bSet B of B-valued sets. The fundamental
theorem of forcing for Boolean-valued models [17], trans-
lated to our situation, then states that bSet B is a B-valued
model is ZFC.

To show the independence of CH, it remains to construct
two appropriate complete Boolean algebras The properties
of bSet B can vary wildly depending on the choice of the
complete Boolean algebra B. There is always a map check

: pSet → bSet B, 𝑥 ↦→ �̂� , but in general, �̂� might have
different properties than 𝑥 . Making a good choice of B and
controlling the behavior of the check-names is precisely the
task of forcing (Section 5).
Traditional presentations of forcing, even with Boolean-

valued models (e.g. [4], [25]), are careful to stay within the
foundations of ZFC, emphasizing that all arguments may be
performed internal to a model of ZFC, etc. In order to formal-
ize these set-theoretic arguments in a type-theoretic metathe-
ory, it is important to separate their mathematical content
from their metamathematical content. It is not immediately
clear what parts of these arguments use their set-theoretic
foundation in an essential way and require modification in

the passage to type theory. Our formalization clarifies some
of these questions.

We use custom domain-specific tactics and various forms
of automation throughout our formalization, notably a tac-
tic library for simulating natural deduction proofs inside a
complete Boolean algebra (Section 6). This reveals another
advantage of working in a proof assistant: the bookkeeping
of Boolean truth-values, sometimes regarded as a tedious
aspect of the Boolean-valued approach to forcing, can be
automated away.

Contributions An earlier paper [18] describes a formaliza-
tion of Cohen forcing and the unprovability of CH. In order
to keep our presentation self-contained, we reproduce some
of that material here, incorporating it into our discussions of
our deep embedding of first-order logic/Boolean-valued se-
mantics, usage of metaprogramming, and the Cohen forcing
argument. Our main novel contribution is a formalization
of collapse forcing and the unprovability of ¬CH, thereby
providing the first formalization of the independence of CH
in a single theorem prover. For reasons we will see in Sec-
tion 5, the forcing argument for CH requires far more set
theory and is harder to formalize than the forcing argument
for ¬CH. Moreover, we elaborate on parts of the formal-
ization which were omitted from [18], including expanded
discussions of our implementation of the ZFC axioms and
our formalization of the Δ-system lemma.

Sources Our strategy for forcing ¬CH is a synthesis of the
proofs in the textbooks of Bell ([4], Chapter 2) and Manin
([27], Chapter 8). For the Δ-system lemma, which we use to
verify that Cohen forcing is CCC, we follow Kunen ([26],
Chapters 1 and 5).
We were unable to find a reference for a purely Boolean-

valued account of forcing CH. We loosely followed the con-
ventional arguments given by Weaver ([45], Chapter 12) and
Moore ([30]), and base our construction of Bcollapse on the
collapse algebras defined by Bell ([4], Exercise 2.18).

Related Work Set theory and first-order logic are both
common targets for formalization. Shankar [41] used a deep
embedding of first-order logic for incompleteness theorems.
Harrison gives a deeply-embedded implementation of first-
order logic in HOL Light [19] and a proof-search style ac-
count of the completeness theorem in [20]. Other formaliza-
tions of first-order logic can be found in Isabelle/HOL ([36],
[37],[5]) and Coq ([24], [31]).

A large body of formalized set theory has been completed
in Isabelle/ZF, led by Paulson and his collaborators [32, 33,
35], including the relative consistency of AC with ZF [34].
Building on this, Gunther, Pagano, and Terraf have taken
some first steps towards formalizing forcing [15, 16], by way
of generic extensions of countable transitive models.

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

2 First-Order Logic
The starting point for first-order logic is a language of re-
lation and function symbols. We represent a language as
a pair of N-indexed families of types, each of which is to
be thought of as the collection of relation (resp. function)
symbols stratified by arity:

structure Language : Type (u+1) :=

(functions : N → Type u)

(relations : N → Type u)

2.1 Terms, Formulas and Proofs
The main novelty of our implementation of first-order logic
is the use of partially applied terms and formulas, encoded
in a parameterized inductive type where the N parameter
measures the difference between the arity and the number of
applications. The benefit of this is that it is impossible to pro-
duce an ill-formed term or formula, because type-correctness
is equivalent to well-formedness. This eliminates the need
for separate well-formedness proofs.
Fix a language 𝐿. We define the type of preterms as fol-

lows:

inductive preterm (L : Language.{u}) :

N → Type u

| var : N → preterm 0 -- notation ‵&‵

| func {l : N} : L.functions l → preterm l

| app {l : N} :

preterm (l + 1) → preterm 0 → preterm l

A member of preterm n is a partially applied term. If applied
to n terms, it becomes a term. We define the type of well-
formed terms term L to be preterm L 0.

The type of preformulas is defined similarly:

inductive preformula (L : Language.{u}) :

N → Type u

| falsum : preformula 0 -- notation ⊥
| equal : term L → term L → preformula 0

-- notation ≃
| rel {l : N}, L.relations l → preformula l

| apprel {l : N}, preformula (l + 1) →
term L → preformula l

| imp : preformula 0 → preformula 0 →
preformula 0 -- notation =⇒

| all : preformula 0 → preformula 0

-- notation ∀′

We choose this definition of preformula to mimic preterm.
A member of preformula n is a partially applied formula,
and if applied to n terms, it becomes a formula. The type of
well-formed formulas formula L is defined to be preformula
L 0. Implication is the only primitive binary connective and
universal quantification is the only primitive quantifier. Since
we use classical logic, we can define the other connectives
and quantifiers from these. Note that implication and the

universal quantifier cannot be applied to preformulas that
are not fully applied.

It is also possible to define well-typed terms and formulas
using vectors of terms and nested inductive types. How-
ever, we avoided these kinds of definitions because Lean has
limited support for nested inductive types. In the case of
formulas, this would not even result in a nested inductive
type, but we found it more convenient to adapt operations
and proofs from preterm to preformula using our definition.

We use de Bruijn indices to avoid variable shadowing. This
means that the variable &m under k is bound if𝑚 < 𝑘 and
otherwise represents the (𝑚 − 𝑘)-th free variable. We define
the usual operations of lifting and substitution for terms and
formulas, needed when using de Bruijn variables. The no-
tation t ↑′ n # m means the preterm of preformula t where
all variables which are at least m are increased by n. The lift
t ↑′ n # 0 is abbreviated to t ↑ n. The substitution t[s //

n] is defined to be the term or formula t where all variables
that represent the n-th free variable are replaced by s. More
specifically, if an occurrence of a variable &(n+k) is under k
quantifiers, then it is replaced by s ↑ (n+k). Variables &m for
𝑚 > 𝑛 + 𝑘 are replaced by &(m-1).

Our proof system is a natural deduction calculus, and all
rules are motivated to work well with backwards-reasoning.
The type of proof trees is given by the following inductive
family of types:
inductive prf :

set (formula L) → formula L → Type u

| axm Γ A : A ∈ Γ → prf Γ A

| impI Γ A B : prf (insert A Γ) B →
prf Γ (A =⇒ B)

| impE Γ A B : prf Γ (A =⇒ B) → prf Γ A →
prf Γ B

| falsumE Γ A : prf (insert ∼A Γ) ⊥ → prf Γ A

| allI Γ A : prf ((_ f, f ↑ 1) ′′ Γ) A →
prf Γ (∀′ A)

| allE2 Γ A t : prf Γ (∀′ A) →
prf Γ (A[t // 0])

| ref Γ t : prf Γ (t ≃ t)

| subst2 Γ s t f : prf Γ (s ≃ t) →
prf Γ (f[s // 0]) → prf Γ (f[t // 0])

In allI the notation (_ f, f ↑ 1) ′′ Γ means lifting all free
variables in Γ by one. A term of type prf Γ A, denoted Γ ⊢ A,
is a proof tree encoding a derivation of 𝐴 from Γ. We also
define provability as the proposition stating that a proof tree
exists.
def provable (Γ : set (formula L))

(f : formula L) : Prop := nonempty (prf Γ f)

Our current formalization does not use the data of proof
trees in an essential way, but we defined them so that we
can define manipulations on proof trees (like detour elimi-
nation) in future projects. Besides Boolean-valued semantics
(Section 3), we also formalize ordinary first-order semantics,

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

and our work includes a formalization of the completeness
(and compactness) theorems using Henkin term models.

2.2 ZFC
Usually, the language of set theory has one binary relation
symbol and no function symbols. To make the language
easier to work with, and to concisely formulate the con-
tinuum hypothesis, we conservatively extend ZFC with the
following function symbols: the empty set∅, ordered pairing
(−,−), the natural numbers 𝜔 , power set P(−) and union⋃(−). This gives a conservative extension of the regular the-
ory of ZFC, because these function symbols are all definable.

In Figure 1 we have listed all the axioms of ZFC written
using names variables (the formalization uses de Bruijn vari-
ables). We also include the definition of ordinal, which is
used in the axiom of infinity. Note that epsilon_wellfounded
follows for every set from the axiom of regularity, but we
add it for the sake of completeness. The only axiom scheme
is axiom_of_collection which ranges over all formulas 𝜑

(x,y,p) with (at most) n+2 free variables, where p is a vector
of length n.

Now CH is defined to be the sentence

CH := ∀𝑥,Ord(𝑥) ⇒ 𝑥 ≤ 𝜔 ∨ P(𝜔) ≤ 𝑥,

where 𝑥 ≤ 𝑦 means that there is a surjection from a subset
of 𝑦 to 𝑥 . In code, we have:
def CH_formula : formula L_ZFC :=

∀′ (is_ordinal =⇒
leq_f[omega_t//1] ⊔ leq_f[Powerset_t omega_t//0])

The substitutions ensure that the formulas are applied to the
correct arguments, and ⊔ is notation for disjunction.

3 Boolean-Valued Semantics
A complete Boolean algebra is a Boolean algebra B with
additional operations infimum (

d
) and supremum (⊔) of

any subset of B. We use ⊓,⊔, =⇒ ,⊤, and ⊥ to denote meet,
join, material implication, top, and bottom. For more details
on complete Boolean algebras, we refer the reader to the
textbook of Halmos-Givant [13].

Definition 3.1. Fix a language 𝐿 and a complete Boolean
algebra B. A B-valued structure (or bStructure L B) is a
type𝑀 equipped with the following.

• for every 𝑛-ary function symbol in a map𝑀𝑛 → 𝑀 ;
• for every 𝑛-ary relation symbol a map𝑀𝑛 → B;
• a function ≈ : 𝑀 → 𝑀 → B that is a Boolean valued
congruence relation. This means that e.g. 𝑥 ≈ 𝑦 ⊓ 𝑦 ≈
𝑧 ≤ 𝑥 ≈ 𝑧 and that

l

𝑖

𝑥𝑖 ≈ 𝑦𝑖 ≤ 𝑓 (®𝑥) ≈ 𝑓 (®𝑦) .

There are similar conditions for reflexivity, symmetry
and congruence for relation symbols.

Given a preterm t in the language, we can realize it in
any B-valued structure 𝑀 . For this, we need to know the
free variables in t. To do this conveniently with de Bruijn
variables, we say that a (pre)term t is bounded by l if all free
variables are less than l (i.e. all variables under k quantifiers
are less than k+l). Given t : preterm n which is bounded
by l, and a realization v : vector M l of the free variables,
we define the realization J𝑡K𝑣

𝑀
: 𝑀𝑛 → 𝑀 by structural

recursion on 𝑡 .
For a formula 𝜑 we do the same: we define bounded

(pre)formulas, and define an realization J𝜑K𝑣
𝑀

: 𝑀𝑛 → B
by structural recursion. If 𝜑 is a sentence, the realization in a
structure is just an element of the Boolean algebra: J𝜑K𝑀 : B.
Since the truth values in a Boolean-valued model live in-

side the Boolean algebra B instead of just being true or false,
we have to take a little care when stating the soundness
theorem for Boolean-valued models. Usually, a soundness
theorem states something like “if 𝜑 is provable from hy-
potheses in 𝐶 then in every model where 𝐶 holds, 𝜑 also
holds.” With Boolean truth-values, this is instead stated as
an inequality of truth values.

Definition 3.2. For Γ : B and a B-valued structure 𝑀 we
say that Γ forces a sentence 𝜑 in𝑀 , written Γ ⊩𝑀 𝜑 , if Γ ≤
J𝜑K𝑀 . We say that a set of sentences 𝐶 models 𝜑 , written
𝐶 |=B 𝜑 , if for all non-empty B-valued structures𝑀 we have(d

𝜓 ∈𝐶 J𝜓K𝑀) ⊩𝑀 𝜑 .

Using this definition, we can now state the Boolean-valued
soundness theorem:

theorem boolean_soundness {Γ : set (sentence L)}

{𝜑 : sentence L} : Γ ⊢ 𝜑 → Γ |=[B] 𝜑

The proof is a straightforward structural induction.

4 Boolean-Valued Models of Set Theory
4.1 The Aczel Encoding
Our starting point is the Aczel encoding of ZFC ([1–3]) into
dependent type theory. This was implemented in Coq by
Werner [46], and in Lean’smathlib by Carneiro [7]. The idea
is to take a type universe Type u and imitate the cumulative
hierarchy construction with an inductive type:

inductive pSet : Type (u+1)

| mk (𝛼 : Type u) (A : 𝛼 → pSet) : pSet

For an element x = ⟨𝛼, A⟩ : pSet, the function A points to
the elements of x. We can define the empty set as ∅ := ⟨
empty, empty.elim⟩ : pSet. Note that pSet does not satisfy
the axiom of extensionality. In order to obtain a model where
the axiom of extensionality holds, we must quotient pSet by
extensional equivalence:

def equiv : pSet → pSet → Prop

| ⟨𝛼,A⟩ ⟨𝛽,B⟩ := (∀a, ∃b, equiv (A a) (B b)) ∧
(∀b, ∃a, equiv (A a) (B b))

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

axiom_of_emptyset := ∀ x, x ∉ ∅
axiom_of_ordered_pairs := ∀ x y z w, (x, y) = (z, w) ↔ x = z ∧ y = w

axiom_of_extensionality := ∀ x y, (∀ z, (z ∈ x ↔ z ∈ y)) → x = y

axiom_of_union := ∀ u x, x ∈ ⋃
u ↔ ∃ y ∈ u, x ∈ y

axiom_of_powerset := ∀ z y, y ∈ P(z) ↔ ∀ x ∈ y, x ∈ z

axiom_of_infinity := ∅ ∈ 𝜔 ∧ (∀ x ∈ 𝜔, ∃ y ∈ 𝜔, x ∈ y) ∧ (∃ 𝛼, Ord(𝛼) ∧ 𝜔 = 𝛼) ∧
∀ 𝛼, Ord(𝛼) → (∅ ∈ 𝛼 ∧ ∀ x ∈ 𝛼, ∃ y ∈ 𝛼, x ∈ y) → 𝜔 ⊆ 𝛼

axiom_of_regularity := ∀ x, x ≠ ∅ → ∃ y ∈ x, ∀ z ∈ x, z ∉ y

zorns_lemma := ∀ z, z ≠ ∅ → (∀ y, (y ⊆ z ∧ ∀ x1 x2 ∈ y, x1 ⊆ x2 ∨ x2 ⊆ x1) → (
⋃
y) ∈ z) →

∃ m ∈ x, ∀ x ∈ z, m ⊆ x → m = x

axiom_of_collection(𝜑) := ∀ p ∀ A, (∀ x ∈ A, ∃ y, 𝜑(x,y,p)) →
(∃ B, (∀ x ∈ A, ∃ y ∈ B, 𝜑(x,y,p)) ∧ ∀ y ∈ B, ∃ x ∈ A, 𝜑(x,y,p))

epsilon_transitive(z) := ∀ x, x ∈ z =⇒ x ⊆ z

epsilon_trichotomy(z) := ∀ x y ∈ z, x = y ∨ x ∈ y ∨ y ∈ x

epsilon_wellfounded(z) := ∀ x, x ⊆ z =⇒ x ≠ ∅ → ∃ y ∈ x, ∀ w ∈ x, w ∉ y

Ord(z) := epsilon_trichotomy(z) ∧ epsilon_wellfounded(z) ∧ epsilon_transitive(z)

Figure 1. Our formulation of ZFC.

One can then definemembership from equivalence and check
that modulo extensional equivalence, pSet is a model of ZFC.

4.2 Boolean-Valued Sets
We now want to generalize pSet to a Boolean-valued model
of ZFC. We must give a B-valued predicate interpreting the
membership symbol ∈. We will encode this information by
extending each ⟨𝛼,A⟩ : pSet with an additional function B

: 𝛼 → B, which has the effect of attaching a Boolean truth-
value to every element of ⟨𝛼,A⟩:
inductive bSet (B : Type u)

[complete_boolean_algebra B] : Type (u+1)

| mk (𝛼 : Type u) (A : 𝛼 → bSet)

(B : 𝛼 → B) : bSet

The B-valued predicate B expresses that A a ∈ ⟨𝛼, A, B⟩
has truth value (at least) B i. For convenience, if x : bSet

B and x := ⟨𝛼, A, B⟩, we put x.type := 𝛼, x.func := A,

x.bval := B.
One can also be led to this construction by considering the

recursive name-construction from forcing, a key ingredient
to building forcing extensions. Let P be a poset. From e.g.
(Kunen [26], Definition IV.2.5):

Definition 4.1. A set 𝜏 is a P-name iff 𝜏 is a relation and for
all ⟨𝜎, 𝑝⟩ ∈ 𝜏 we have that 𝜎 is a P-name and 𝑝 ∈ P.

In particular, if P is the singleton poset, then a P-name
is merely a set of P-names, in the same way that a term of
type pSet is a type-indexed collection of terms of type pSet.
Reversing this observation, we can replace Pwith a complete
Boolean algebra B and generalize the definition of pSet.mk
with a third field, so that as in the case of P-names, every

element of a set is assigned an element (a “Boolean truth-
value”) of B, again giving us bSet B. Thus, bSet B should be
thought of as the type of B-names.

Boolean-Valued Equality and Membership We can de-
fine Boolean-valued equality and membership analogously
to the definitions in pSet. To do this, we translate quantifiers
and connectives into operations on B:

def bv_eq : bSet B → bSet B → B

| ⟨𝛼, A, B⟩ ⟨𝛼 ′, A′, B′⟩ :=

(
d
a, B a =⇒ ⊔

a′, B′ a′ ⊓ bv_eq (A a) (A′ a′)) ⊓
(
d
a′, B′ a′ =⇒ ⊔

a, B a ⊓ bv_eq (A a) (A′ a′))

We abbreviate bv_eqwith the infix operator =B. It is now easy
to define B-valued membership, which we denote by ∈B.

def mem : bSet B → bSet B → B

| x ⟨𝛼, A, B⟩ :=
⊔
a, B a ⊓ x =B A a

While standard treatments of Boolean-valued models of ZFC
mutually define equivalence and membership so that the
axiom of extensionality follows definitionally ([4], [17]), the
induction principle given by the non-mutual definition is
easier to work with in our formalization.

4.3 The Fundamental Theorem of Forcing
The fundamental theorem of forcing for Boolean-valuedmod-
els [17] states that for any complete Boolean algebra B, the
type bSet B forms a Boolean-valued model of ZFC.
We mostly follow Bell [4] for the verification of the ZFC

axioms in bSet B. Although most of the argument is routine,
we describe some aspects of bSet B which are revealed by
this verification.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

Notably, we can define subsets of a set x : bSet B by just
modifying x.bval. This gives a nice definition of powerset:

Definition 4.2. Fix a B-valued set x = ⟨𝛼, A, b⟩ and 𝜒

: 𝛼 → B be a function. We define the B-valued set 𝜒 as
⟨𝛼, A, 𝜒⟩. The powerset P(𝑥) of 𝑥 is defined to be the B-
valued set

set_of_indicator 𝜒 := ⟨𝛼 → B, (_ 𝜒, 𝜒), (_ 𝜒, 𝜒 ⊆𝐵 𝑥)⟩.

In particular, this gives an easy implementation of the
axiom of comprehension (not just for interpretations of for-
mulas, but for any B-valued predicate on bSet B satisfying
an appropriate B-valued congruence lemma):

lemma bSet_axiom_of_comprehension (𝜑 : bSet B → B)

(x : bSet B)

(H_congr : B_ext 𝜑) {Γ : B} :

Γ ≤ ⊔
y, y ⊆B x ⊓

d
z, z ∈B y ⇔ (z ∈B x ⊓ 𝜑 z)

Following Bell, we verify Zorn’s lemma in bSet B. As is
the case with pSet, establishing Zorn’s lemma requires the
use of a choice principle from the metatheory. This was the
hardest part of our verification of the fundamental theorem
of forcing, and relies on the technical tool ofmixtures, which
allow sequences of B-valued sets to be “averaged” into new
ones. Using mixtures, one derives the maximum principle,
which allows existentially quantified statements to be instan-
tiated without changing their truth-value (so is essentially
the axiom of choice):

lemma maximum_principle (𝜑 : bSet B → B)

(h_congr : B_ext 𝜑) : ∃ u, (
⊔
(x:bSet B), 𝜑 x) = 𝜑 u

For example, if x : bSet B and 𝜑 is a B-valued predicate,
if we have that ⊤ ≤ ⊔

j : x.type, 𝜑 x, there may not ac-
tually be some j : x.type which attains that supremum.
However, the maximum principle ensures that a witness can
be constructed via mixtures.

After we verify the (shallow) statements of all the axioms
in bSet B, the last step is to construct a B-valued L_ZFC-
structure, called V B, on bSet B, and check that the interpre-
tations of the axioms are⊤. This amounts to proving that the
deeply embedded statements correspond to the shallowly
embedded statements. This is trivial for the axioms, since
it is true by reflexivity, but takes more work for the axiom
scheme of collection. This proves the following theorem.

theorem fundamental_theorem_of_forcing :

⊤ ⊩[V B] ZFC

4.4 Ordinals
Definition 4.3. We define the canonical map check : pSet

→ bSet B by

def check : pSet → bSet B

| ⟨𝛼,A⟩ := ⟨𝛼, check ◦ A, (_ a, ⊤)⟩

We write �̂� for check x, and call it a check-name. These are
also known as canonical names, as they are the canonical
representation of standard two-valued sets inside a Boolean-
valued model of set theory.3

In general, �̂� might have different properties than 𝑥 , but Δ0
properties (i.e. those definable with only bounded quantifica-
tion) are always preserved. Importantly, bSet B thinks 𝜔 is
𝜔 . Notably, 𝜔 : pSet is defined separately from ordinal.mk

omega (see below) as the finite von Neumann ordinals indexed
by N, so the underlying types of 𝜔 and 𝜔 are exactly N.
The treatment of ordinals in mathlib associates a class

of ordinals to every type universe, defined as isomorphism
classes of well-ordered types. Lean’s ordinals may be repre-
sented inside pSet by defining a map ordinal.mk : ordinal

→ pSet via transfinite recursion (indexing the von Neumann
construction of ordinals). In pseudocode,

def ordinal.mk : ordinal → pSet

| 0 := ∅
| succ b := pSet.succ (ordinal.mk b)

-- i.e. (mk b ∪ {mk b})

| is_limit b :=
⋃

[< b, (ordinal.mk [)

Working internally to any model 𝑀 of ZFC, we can de-
fine the class Ord(𝑀) as the collection of transitive sets
which are well-ordered by their membership relation. While
ordinal.mk actually induces an order-isomorphism of pSet’s
ordinals with Lean’s ordinals, the map

check ◦ ordinal.mk : ordinal → bSet B

generally fails to surject onto bSet B’s ordinals (in general,
these are mixtures of checked ordinals).

We summarize the relationship between the three “large”
types currently in play:

pSet bSet B

ordinal.{u}

check

ordinal.mk

We adopt the convention to spell out the name of Lean
ordinals and cardinals, and use (checked) Hebrew letters for
their (Boolean-valued) set-theoretic counterparts, e.g.

check (ordinal.mk (aleph 1)) = check (ℵ1) = ℵ1̌

We will freely conflate pSet ordinals with their underlying
types, so e.g. a : ℵ2 means a : ℵ2.type. (It is always true
that the cardinality of (ordinal.mk ^).type is ^.) Since in
general, ℵ̂1 is not what bSet B thinks is ℵ1, we will use a
superscript, e.g. ℵB

𝑘
, to denote the internal alephs of bSet B.

3We were pleased to discover Lean’s support for custom notation allowed
us to declare the Unicode modifier character U+030C (̂) as a postfix operator
for check.

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

5 Forcing
Our point of departure from conventional accounts of forc-
ing with a poset P over a countable transitive model [25, 26],
which use a generic filter to “evaluate” the P-names to pro-
duce an ordinary model of ZFC, is to force with Boolean-
valued models of ZFC instead. As first observed by Scott and
Solovay [40], this obviates the need for countable transitive
models, generic filters, or the truth and definability lemmas,
and allows us to work only with the B-names.

The cost of taking the B-names at face value is that the cal-
culus of the forcing relation [43], a key technical tool in usual
forcing arguments, is replaced by the calculation of Boolean
truth-values in B. From the Boolean-valued perspective, forc-
ing a sentence Φ in the language of ZFCmeans constructing
some Boolean algebra B and a B-valued model 𝑀 of ZFC
such that the truth value Φ𝑀 of Φ is ⊤. We will always force
over a type universe Type u, and our Boolean-valued models
of ZFC are always of the form bSet B for some B : Type u.
That B belongs to the “ground model” Type u is crucial for
forcing, as specific choices of B will affect the structure of
bSet B (and hence the truth-value of Φ).
In this section, we describe two forcing arguments, one

for ¬CH and another for CH. Both follow roughly the same
pattern. In both cases, we require the existence of a function;
for ¬CH, an injection ℵ2 ↩→ P(𝜔), and for CH, a surjection
ℵ1 ↠ P(𝜔). We will construct a Boolean algebra B which
encodes the construction (in Type u) of such a function 𝐹 .
Then B induces in bSet B an approximation 𝐹 to such a
function, which a priori is only between check-names. To
finish the forcing argument, we must show that it suffices
to work with 𝐹 . This requires a careful study of how truth-
values are calculated in bSet B, and ultimately reduces to
an analysis of how truth-values of ∀-∃ statements in bSet

B can be reflected back to Type u, and a verification of a
combinatorial condition on B.

5.1 Regular Open Algebras
Definition 5.1. Let 𝑋 be a topological space, and for any
open set𝑈 , let𝑈 ⊥ denote the complement of the closure of𝑈 .
The regular open algebra of a topological space𝑋 , written
RO(𝑋), is the collection of all open sets 𝑈 such that 𝑈 =

(𝑈 ⊥)⊥, or equivalently such that 𝑈 is equal to the interior
of the closure of 𝑈 . RO(𝑋) is equipped with the structure
of a complete Boolean algebra, with 𝑥 ⊓ 𝑦 := 𝑥 ∩ 𝑦 and
𝑥 ⊔ 𝑦 := ((𝑥 ∪ 𝑦)⊥)⊥ and ¬𝑥 := 𝑥⊥ and

⊔
𝑥𝑖 := ((⋃𝑥𝑖)⊥)⊥.

While forcing conditions usually present themselves as
a poset instead of a complete Boolean algebra, any forcing
poset can be represented as the dense suborder of a regular
open algebra [30].

Definition 5.2. A dense suborder of B is a subset P ⊆ B
satisfying the following conditions: (1) for all 𝑝 ∈ P, ⊥ < 𝑝;
(2) for all ⊥ < 𝑏 ∈ B, there exists a 𝑝 ∈ P such that 𝑝 ≤ 𝑏.

We will use the following combinatorial conditions on B
in our forcing arguments:

Definition 5.3. We say that B has the countable chain
condition (CCC) if every antichain A : 𝐼 → B (i.e. an
indexed collection of elementsA = {𝑎𝑖 }𝑖 such that whenever
𝑖 ≠ 𝑗, 𝑎𝑖 ⊓ 𝑎 𝑗 = ⊥) has a countable image.

Definition 5.4. We say that B is 𝜎-closed if there exists a
dense suborder P ofB such that every𝜔-indexed downwards
chain 𝑝0 ≥ · · · ≥ 𝑝𝑛 · · · in P has a lower bound 𝑝𝜔 in P.

5.2 Cohen Forcing
As we have already seen in Definition 4.2, we construct
the powerset of a B-valued set u : bSet B using B-valued
indicator functions 𝜒 : u.type → B. The basic strategy of
Cohen forcing is to chooseB such that for every a : ℵ2, there
is a canonical indicator function (a “Cohen real”) 𝜒a : N→ B.
This is an external function (a member of a function type of
Type u) which descends to an injective function ℵ̂2 ↩→ P(𝜔)
in bSet B.

To show that the injection ℵ̂2 ↩→ P(𝜔) suffices to negate
CH, we will show that if B has the CCC, then 𝜔 ≺ ℵ̂1 ≺
ℵ̂2, where 𝑥 ≺ 𝑦 means that there is no surjection from a
subset of 𝑥 to 𝑦. We then ensure that B has this property
by applying a powerful combinatorial argument called the
Δ-system lemma.

Definition 5.5. The Cohen poset for adding ℵ2-many Co-
hen reals is the collection of all finite partial functions ℵ2 ×
N→ 2, ordered by reverse inclusion.

In the formalization, the Cohen poset is represented as a
structure with three fields:
structure P_cohen : Type :=

(ins : finset (ℵ2.type × N))
(out : finset (ℵ2.type × N))
(H : ins ∩ out = ∅)

That is, we identify a finite partial function f with the triple
⟨f.ins, f.out, f.H⟩, where f.ins is the preimage of {1},
f.out is the preimage of {0}, and f.H ensures that f is well-
defined. While the members of the Cohen poset are usually
defined as finite partial functions, we found that in practice
f is only needed to give a finite partial specification of a
subset of ℵ2 × N (i.e. a finite set f.ins which must be in the
subset, and a finite set f.out which must not be in the sub-
set). We chose this representation to make that information
immediately accessible.

The Boolean algebra which we use for forcing ¬CH is

Bcohen := RO(2ℵ2×N)
where we equip 2ℵ2×N with the usual product space topology.

Definition 5.6. We define the canonical embedding of
the Cohen poset into Bcohen as follows:

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

def] : P_cohen → B_cohen :=

_ p, {S | p.ins ⊆ S ∧ p.out ⊆ - S}

That is, we send each 𝑐 : Pcohen to all subsets satisfying the
specification given by c. This is clopen, hence regular.

Crucially, the image of this embedding is a dense suborder
ofBcohen. This is essentially because the image of] : Pcohen →
Bcohen is the standard basis for the product topology. Our
chosen encoding of the Cohen poset also made it easier to
perform this identification.

Definition 5.7. Let a : ℵ2. For any 𝑛 : N, the collection of
all subsets of ℵ2 ×Nwhich contain (a, 𝑛) is a regular open of
2ℵ2×N, denoted P(a,𝑛) . Thus, we associate to a the B-valued
indicator function 𝜒a : N → B defined by 𝜒a (𝑛) := P(a,𝑛) .
By Definition 4.2, each 𝜒a induces a new B-valued subset
�̃�a ⊆ N̂. We call �̃�a a Cohen real.

Definition 5.7 gives us an ℵ2-indexed family of Cohen
reals. Converting this data into an injective function from ℵ̂2
to P(N) inside bSet B requires some care. One must check
that a ↦→ �̃�a is externally injective, and this is where the
characterization of the Cohen poset as a dense subset of B
(and moving back and forth between this representation and
the definition as finite partial functions) comes in.
To finish negating CH, it suffices to show that 𝜔 ≺ ℵ̂1 ≺

ℵ̂2, i.e. that there is no surjection 𝜔 ↠ ℵ̂1 and no surjection
ℵ̂1 ↠ ℵ̂2. We describe how we proved the latter claim; an
identical argument can be used to show the former.
The strategy of the proof is to assume that there is a sur-

jection ℵ̂1 ↠ ℵ̂2. This surjectivity assumption is a Boolean-
valued ∀-∃ statement about check-names, and we will reflect
it into the metatheory, producing a ∀-∃ statement about
the non-checked counterparts in pSet. We will then use the
CCC, a combinatorial condition on Bcohen, to show that the
reflected ∀-∃ statement implies a contradiction.
Specifically, we use the following lemma, which is true

for general B:

lemma AE_of_check_larger_than_check {x y : pSet}

(f : bSet B) {Γ : B} (H_nonzero : ⊥ < Γ)

(H : Γ ≤ is_surj_onto x̌ y̌ f) (Hy : ∃ z, z ∈ y) :

∀ i : y.type, ∃ j : x.type,

⊥ < is_func f ⊓ pair (x.func j)̌ (y.func i)̌ ∈B f

Suppose that there is a surjection ℵ̂1 ↠ ℵ̂2. Applying this
lemma to 𝑥 := ℵ̂1, 𝑦 := ℵ̂2, we obtain a ∀-∃ statement in the
metatheory to which we can apply Lean’s axiom of choice
to produce a function 𝑔 : ℵ2 → ℵ1. Since externally, we
know that ℵ1 ≺ ℵ2, it follows from the infinite pigeonhole
principle that 𝑔 must have an uncountable fiber over some
a < ℵ1. For every [∈ 𝑔−1 ({a}), let 𝐴[be the element of
Bcohen given by the lemma, i.e.

(is_func f) ⊓ (pair (ℵ1.func a)̌ (ℵ2.func [)̌ ∈B f) .

Because each 𝐴[has as a conjunct the knowledge that 𝑓
is a function, for [1 ≠ [2, 𝐴[1 and 𝐴[2 are incompatible, i.e.
𝐴[1 ⊓𝐴[2 = ⊥. Since the lemma guarantees that each 𝐴[is
nonzero, the 𝐴[form an uncountable antichain. Therefore,
if B has the CCC, there is a contradiction. By Lemma 5.3,
¬CH is forced true in bSet Bcohen.
In our formalization, we actually prove a more general

version of this argument, replacing ℵ1 and ℵ2 with any two
infinite regular cardinals ^1 < ^2.

CCC and the Δ-system lemma To show that Bcohen has
the CCC, we formalize and then apply a general result in
transfinite combinatorics called theΔ-system lemma. Though
only briefly mentioned in [18], this was one of the most
involved parts of our formalization of Cohen forcing, as it
was a technical result in infinitary combinatorics. The details
of the full argument are too technical to give here, so we
omit the proofs in this section.
A family (𝐴𝑖)𝑖 of sets is called a Δ-system if there is a

set 𝑟 , called the root such that whenever 𝑖 ≠ 𝑗 we have
𝐴𝑖 ∩𝐴 𝑗 = 𝑟 . We write 𝑐<^ for the supremum of 𝑐𝜌 for 𝜌 < ^ .

Lemma 5.1 (Δ-system lemma (Theorem 1.6, [26])). Let ^
be an infinite cardinal and let \ > ^ be regular, such that for
all 𝛼 < \ we have 𝛼<^ < \ . For any family {𝐴𝑖 }𝑖∈𝐼 such that
|𝐼 | ≥ \ and for all 𝑖 , |𝐴𝑖 | < ^, there is a subfamily of size \
which forms a Δ-system.

The formalization closely follows the proof given in Kunen
[26, Chapter 2, Theorem 1.6]. The proof involves tricky rea-
soning steps involving ordinals, which are common in infini-
tary combinatorics. It starts by assuming that without loss
of generality

⋃
𝑖 𝐴𝑖 ⊆ \ , so that all the 𝐴𝑖 are well-ordered,

and by assuming that all𝐴𝑖 have the same order-type. These
simplifying assumptions are harder to formalize, because
that involves actually proving the general case from the spe-
cial case. It also involves defining a sequence by transfinite
recursion, while simultaneously proving that the sequence
has certain properties (lies below \).

In the formalization, the fact that the type of ordinals is a
large type, i.e. lives one universe level higher than the types
it is built from, causes difficulties. (These difficulties were
also present earlier, because whenever we use e.g. “ℵ2.type”,
we are actually referring to a nonconstructively chosen wit-
ness for the order type of all the ordinals less than aleph 2.)
The reason is that the original proof heavily uses sets of
ordinals, and taking their order types, but in Lean this would
involve calculating in both ordinal.{u} and ordinal.{u+1}.
Instead, we frequently work with well-orders of a given or-
der type, instead sets of ordinals, to do all computations in
ordinal.{u}.
Lastly, one must take care to formulate the Δ-system so

that {𝐴𝑖 }𝑖 is an indexed family, instead of a collections of
sets. Theorem 5.1 below does not follow conveniently from
the Δ-system lemma if it is formulated with a collection of

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

sets; [26] is somewhat ambiguous about which version is
used.

Setting ^ = 𝜔 and \ = ℵ1 in Lemma 5.1 yields:

Lemma 5.2. Any uncountable family of finite sets has an
uncountable subfamily forming a Δ-system.

We say that a topological space has the CCC if every family
of pairwise disjoint open sets is countable. The proof of the
following can be found in [18].

Theorem 5.1. For any family (𝑋𝑖)𝑖∈𝐼 of topological spaces,∏
𝑖∈𝐼 𝑋𝑖 has the CCC if for every finite 𝐽 ⊆ 𝐼 , the product∏
𝑖∈𝐽 𝑋𝑖 has the CCC.

From Theorem 5.1 and the observation that 2𝐽 has the
CCC if 𝐽 is finite, the result follows.

Lemma 5.3. Bcohen has the CCC.

5.3 Collapse Forcing

Whereas Cohen forcing creates a new injection ℵ̂2 ↩→ P(𝜔),
we can use collapse forcing to create a new surjection 𝐹 :
ℵB1 ↠ P(𝜔). Similarly to Cohen forcing, the strategy is
to pick B such that there is a canonical B-valued indicator
function on ℵ̂1×

�
P(𝜔) representing the graph of a surjection

𝐹 . To show that 𝐹 suffices to force CH, we must verify that
our choice of B is 𝜎-closed.
The formalization of collapse forcing is actually much

more involved than the formalization of Cohen forcing. In
Cohen forcing, we have to do relatively little work inside of
bSet B itself besides proving basic properties of functions.
The difficulty is concentrated in proving and applying the
CCC, which mostly happens in the metatheory. Moreover,
constructing the new function (and the rest of the argument)
required no density arguments at all. This is because in order
to force ¬CH, we only had to ensure there was some infi-
nite cardinality between 𝜔 and P(𝜔) (we did not determine
exactly which internal aleph number ℵ̂1 was in bSet B).

However, to force CH, the quantifiers are flipped and now
we must exclude all cardinalities between𝜔 and P(𝜔). From
cleverly choosing B, the best we can do is to construct a
surjection 𝜋 : ℵ̂1 ↠

�
P(𝜔), and we are forced to prove that

ℵ̂1 = ℵB1 and
�
P(𝜔) = P(𝜔). This means we must define and

construct ℵB1 , entailing, for example, the development of the
theory of ordinals internal to bSet B. For comparison, our
library on set theory in bSet B totalled 2723 LOC when we
forced ¬CH, and grew to 7020 LOC after forcing CH.

Definition 5.8. We define Pcollapse to be the poset of count-
able partial functions ℵ1 → P(𝜔). The principal open sets

𝐷𝑝 := {𝑔 : ℵ1 → P(𝜔) | 𝑔 extends 𝑝}, 𝑝 ∈ Pcollapse
form the basis of a topology 𝜏 (finer than the product topol-
ogy) on the function set P(𝜔)ℵ1 . We put

Bcollapse := RO
(
P(𝜔)ℵ1 , 𝜏

)
.

Lemma 5.4. Bcollapse is 𝜎-closed.

Proof. We show that the collection of principal open sets
D := {𝐷𝑝 }𝑝 forms a dense subset of Bcollapse such that every
𝜔-indexed downwards chain in D has a lower bound in D.
SinceD generates the topology, it is clearly a dense suborder.
For an arbitrary 𝜔-indexed downwards chain

𝐷𝑝0 ⊇ 𝐷𝑝1 ⊇ · · · ⊇ 𝐷𝑝𝑛 ⊇ · · · ,
it follows from the definition of the principal open sets that
𝑝0 ⊆ 𝑝1 ⊆ · · · ⊆ 𝑝𝑛 ⊆ · · · . Then put 𝑝𝜔 :=

⋃
𝑖 𝑝𝑖 . Since the

union of countable partial functions is a countable partial
function, 𝐷𝑝𝜔 is a lower bound of {𝐷𝑝𝑖 }𝑖 . □

Remark 5.1. As an implementation detail, in the formal-
izationwe define Pcollapse to be the countable partial functions
(in Type u) between (ordinal.mk (aleph one) : pSet).type

and (powerset omega : pSet).type, so that
Bcollapse-valued indicator functions on

ordinal.mk (aleph one) : pSet).type ×
(powerset omega : pSet).type

are definitionally equal toBcollapse-valued indicator functions
on the underlying types of check (ordinal.mk (aleph one))

and check (powerset omega).

To specify the surjection ℵ̂1 ↠

�
P(𝜔), we specify a subset

(the graph of the function) of the powerset P(ℵ̂1 ×
�
P(𝜔)).

In bSet Bcollapse, we can do this by specifying the indicator
function 𝜒𝜋 of the graph of a function 𝜋 : ℵ̂1 →

�
P(𝜔) as

follows: to an [< ℵ1 and a subset 𝑆 ⊆ P(𝜔) (in pSet), we
attach the principal open (comprising functions extending
the singleton countable partial function {([, 𝑆)}):

𝜒𝜋 ([, 𝑆) := 𝐷 {([,𝑆) } = {𝑔 : ℵ1 → P(𝜔) | 𝑔([) = 𝑆}.
More generally, we formalize conditions over generic x,

y : pSet and B for when a function af : x.type → y.type

→ B induces a surjection �̂� → �̂� in bSet B. By definition,
such a function always induces a relation on the product (in
bSet B) of x and y. Surjectivity is equivalent to

d
j, (

⊔
i, af i j) = ⊤, totality is equivalent to

d
i, (

⊔
j, af

i j) = ⊤, and well-definedness follows from conditions:

(∀ i, ∀ j1 j2, j1 ≠ j2 → af i j1 ⊓ af i j2 ≤ ⊥)
(∀ i1 i2, ⊥ < (func x i1) =B (func x i2) → i1 = i2)

Both surjectivity and totality of 𝜒𝜋 require density arguments,
where the definition of indexed supremum (

⊔
𝑥𝑖) in the

regular open algebra as the regularization ((⋃𝑥𝑖)⊥)⊥ of
the set-theoretic union plays a key role: the union of the
truth values is not the entire space, but is only a dense open
whose regularization is the entire space. In particular, the
density argument for surjectivity crucially uses that ℵ1 is
uncountable while 𝜔 is countable.
To finish demonstrating that CH is true in bSet Bcollapse,

it remains to check that
�
P(𝜔) = P(𝜔) and ℵ̂1 = ℵB1 . There

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

are two major obstacles. The first is that to even formally
state the latter equality, we must construct ℵB1 in bSet B.
While the operation bv_powerset (Definition 4.2) gives a con-
struction of the internal powerset of any x : bSet B (using
B-valued indicator functions, for any B), ℵB1 is only specified
as the least ordinal greater than 𝜔 , and does not admit as
direct of a construction. We describe our construction of ℵB1
(as the Hartogs number of 𝜔) in Section 5.4.

Now we must ensure that no new countable ordinals are
added to ℵ1 and that no new subsets of 𝜔 are added to P(𝜔)
in the passage via check from pSet to bSet B. We show this
in Section 5.5 by proving that we can reflect functions with
domain 𝜔 from bSet B to pSet.

5.4 Construction of ℵ1

Instead of using the specification of ℵB1 as the least ordinal
larger than 𝜔 with Cantor’s theorem and using the well-
foundedness of the ordinals to construct ℵ1, we opt for a
direct construction of ℵ1, based on the well-known construc-
tion of ℵ1 as the Hartogs number of 𝜔 [21].
We lay out the basic strategy. Recall that a term of type

bSet B comprises three pieces of information: an indexing
type 𝛼 , an indexing function A : 𝛼 → bSet B, and a truth-
value function B : 𝛼 → B.

1. We define the underlying type 𝛼 for ℵB1 to be P(𝜔 ×
𝜔).type.

2. We define the truth-value function B : 𝛼 → B to as-
sign to any 𝑅 ⊆ 𝜔×𝜔 the (truth-value of) the sentence,
“there exists an ordinal [and an injection 𝑓 : [↩→ 𝜔

such that 𝑅 is the image of the membership relation
of [under 𝑓 .”

3. Using themaximumprinciple (which is essentiallyAC),
we define the indexing function 𝐴 for ℵB1 by choosing,
for every 𝑅 : 𝛼 , a witness [𝑅 such that 𝑅 is the image of
[under an injection into𝜔 . That𝐴 surjects onto count-
able ordinals reduces to the fact that order-isomorphic
ordinals must be equal.

Implementation details In the formalization, this strat-
egy is implemented in three stages. First, the axiom of com-
prehension (Section 4.3) is applied to P(𝜔 × 𝜔) to produce
(what bSet B thinks is) the collection of all relations 𝑅 on
𝜔 such that 𝐵(𝑅) holds. This combines steps 1 and 2 and
produces a set a1′_aux. Then we modify the indexing func-
tion a1′_aux.func (by using the maximum principle) to point
from 𝑅 to a chosen witness [𝑅 for 𝑅, producing a1′. Finally,
since the ordinals 0 and 1 both have empty membership re-
lations, it is unprovable in Lean whether a1′ contains one or
the other, so we add both manually, producing ℵB1 .
Our implementation differs from the usual construction

of Hartogs numbers by starting with the sub-well-orders
of 𝜔 , rather than taking the class of countable ordinals and
later showing it is a set. In this way we avoid performing a
smallness argument, at the cost of using the axiom of choice

to select witnesses. We remark that our construction does
not use specific properties of 𝜔 and easily generalizes to
construct the successor cardinal of any infinite set. Instead
of using membership (<), we could have used subset (≤)
instead, which would avoid the intermediate a1′, but this
would have made other parts of the proof more complex.

5.5 Function Reflection
Suppose given y : pSet and f : bSet B such that bSet B
models that f is a function from 𝜔 to �̂�. We say that bSet B
reflects f if there exists a g : pSet such that g is a function
from 𝜔 to y in pSet, and bSet B models that �̂� = 𝑓 . We say
that bSet B reflects countable functions if it reflects all
such f.

Lemma 5.5. Let B be a complete Boolean algebra, and sup-
pose that bSet B reflects countable functions. Then

�
P(𝜔) =

P(𝜔) and ℵ̂1 = ℵB1 .

Proof. To see that ℵ̂1 ⊆ ℵB1 , let 𝑥 be an arbitrary element of
ℵ̂1. By definition 𝑥 is equal to [̂ for some [< ℵ1 in pSet.
Since the ordinals and cardinals of pSet are isomorphic to
Lean’s ordinals and cardinals for Type u, [injects into 𝜔 (in
pSet, and also at the level of indexing types). Since being
an injective function is Δ0, it is absolute for check, so 𝑥 = [̂

injects into 𝜔 . Then, by definition of ℵB1 we have 𝑥 ∈ ℵB1 .4

To see that ℵB1 ⊆ ℵ̂1, suppose towards a contradiction
that this is not true; since the ordinals are well-ordered,
this means that ℵ̂1 < ℵB1 , so by definition of ℵB1 , there is a
surjection 𝑓 : 𝜔 → ℵ̂1. By assumption, this surjection can
be lifted to a function 𝑔 : 𝜔 → ℵ1 in pSet, which can again
be checked to be surjective, a contradiction.
Similarly, it is true for general B and any x : pSet that�

P(𝑥) ⊆ P(�̂�), because indicator functions into bool natu-
rally induce indicator functions to B (by composing with
the canonical inclusion bool → B). Conversely, to show that

P(𝜔) ⊆
�
P(𝜔), use the isomorphism P(𝜔) ≃ 2̂

𝜔
to reduce

this to showing that 2̂
𝜔
⊆ 2̂𝜔 , and then apply the assumption

to an arbitrary element of 2̂
𝜔
. □

It remains to show that Bcollapse fulfills the assumptions
of Lemma 5.5.

Lemma 5.6. bSet Bcollapse reflects countable functions.

Proof. Fix 𝑦 and 𝑓 . It suffices to show that
f ∈B functions 𝜔 y̌

≤ ⊔
(g : bSet B),

g ∈B (functions omega y)̌ ⊓ g =B f

and by a density argument, it suffices to show that for every
principal open 𝐷𝑝 , for 𝐷 := 𝐷𝑝 ∩ 𝑓 ∈B functions 𝜔 �̂�,
4Note that this did not use our assumption, and holds for general B. For a
conventional proof in a set-theoretic metatheory, see e.g. [4]

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

⊥ < (
⋃

g, D ⊓ g ∈B (functions omega y)̌ ⊓ g =B f)

It suffices to construct a single function 𝑔 : 𝜔 → 𝑦 such that
⊥ < 𝐷 ⊓ �̂� = 𝑓 . As with Cohen forcing, we will reflect a
Boolean-valued ∀-∃ statement into the metatheory, and then
use a combinatorial property of Bcollapse to strengthen it. The
following lemma is true for general B:
lemma AE_of_check_func_check (x y : pSet)

{f : bSet B} {Γ : B}

(H : Γ ≤ is_func′ x̌ y̌ f) (H_nonzero : ⊥ < Γ) :

∀ (i : x.type), ∃ (j : y.type) (Γ′ : B)

(H_nonzero′ : ⊥ < Γ′) (H_le : Γ′ ≤ Γ),

Γ′ ≤ (is_func′ x̌ y̌ f) ∧
Γ′ ≤ (pair (x.func i)̌ (y.func j)̌) ∈B f

Recursively applying this lemma, we obtain 𝑔0, . . . , 𝑔𝑛, . . .

such that

𝐷⊓ (0, 𝑔0) ∈B 𝑓 > · · · > 𝐷⊓
(
l

𝑘≤𝑛
((𝑘,𝑔𝑘) ∈B 𝑓)

)
> · · · > ⊥.

The lower bound of this chain implies that the required
lift of 𝑓 is 𝑔 := {(𝑘,𝑔𝑘)}𝑘∈𝜔 . For general B, this lower bound
might be ⊥, but because Bcollapse is 𝜎-closed, we can shrink
each term of the above chain into a dense suborder D such
that all downward 𝜔-indexed chains in D have nonzero in-
tersection, so the intersection of the chain is indeed nonzero.

□

Implementing this argument was one of themost technical
parts of our formalization. At each step of the construction of
the downwards chain, we must recursively apply a ∀-∃ state-
ment and use the axiom of choice to select two witnesses
(with four side conditions), which are then used to simul-
taneously construct the downwards chain and the function
g : pSet. This was implemented as a monolithic recursive
function defined using Lean’s equation compiler, with the
required parts separated afterwards.

5.6 The Independence of CH
In Section 4.3 we showed that bSet B is a model of ZFC,
which means that we can interpret the deeply-embedded
statement of CH_formula into bSet B. It is easy to verify that
the deeply-embedded interpretation of CH_formula coincide
with the shallow interpretations of CH.

As we have already observed, an easy consequence of
Boolean-valued soundness is that a formula is unprovable if
its negation has a model. Thus, we have:
lemma unprovable_of_model_neg {C : Theory L}

{f : sentence L} (S : bStructure L B)

(H_model : ⊤ ⊩[S] C) [H_nonempty : nonempty S]

{Γ : B} (H_nonzero : (⊥ : B) < Γ)

(H : Γ ⊩[S] ∼f) : ¬ (C ⊢′ f)

lemma V_B_cohen_models_neg_CH :

⊤ ⊩[V B_cohen] ∼CH_formula

lemma V_B_collapse_models_CH :

⊤ ⊩[V B_collapse] CH_formula

Combining these results yields

theorem CH_unprv : ¬ (ZFC ⊢′ CH_formula)

theorem neg_CH_unprv : ¬ (ZFC ⊢′ ∼CH_formula)

and the independence of CH follows.

def independent (T : Theory L) (f : sentence L) :=

¬ T ⊢′ f ∧ ¬ T ⊢′ ∼f
theorem independence_of_CH : independent ZFC CH_f :=

by finish [independent, CH_unprv, neg_CH_unprv]

6 Automation and Metaprogramming
A key feature of Lean is that it is its own metalanguage [12],
allowing for seamless in-line definitions of custom tactics
(and modifications of existing ones). This was an invaluable
asset, allowing us to rapidly develop a custom tactic library
for simulating natural-deduction style proofs in complete
Boolean algebras (Section 6.1) and automating equality rea-
soning in those proofs (Section 6.2).

6.1 Simulating Natural Deduction Proofs in
Complete Boolean Algebras

As stressed by Scott [39], “A main point ... is that the well-
known algebraic characterizations of [complete Heyting al-
gebras] and [complete Boolean algebras] exactly mimic the
rules of deduction in the respective logics.” Indeed, that is
really why the Boolean-valued soundness theorem (see Sec-
tion 3) is true: one can just replay natural deduction proofs
in arbitrary complete Boolean algebras, not just Prop. We use
Lean’s metaprogramming to expose natural deduction-style
tactics to the user for the purpose of proving inequalities
in complete Boolean algebras. (One thinks of the ≤ symbol
in an inequality of Boolean truth-values as a turnstile in a
proof state). An immediate challenge which arises is being
able to reason about assumptions (to the left of the turnstile)
modulo associativity and commutativity. For example, the
natural-deduction version of this statement should simply
be by assumption:

∀ a b c d e f g : B,

(d ⊓ e) ⊓ (f ⊓ g ⊓ ((b ⊓ a) ⊓ c)) ≤ a

but with a naive approach, one must manually unwrap and
permute the arguments of the nested ⊓s. Our solution is to
piggyback on the tactic monad’s AC-invariant handling of
hypotheses in the tactic state, by applying the Yoneda lemma
for posets:

lemma poset_yoneda {𝛽} [partial_order 𝛽] {a b : 𝛽}

(H : ∀ Γ : 𝛽, Γ ≤ a → Γ ≤ b) : a ≤ b

With a little custom automation, our first example nearly
becomes “by assumption”

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

example {a b c d e f g : B} :

(d ⊓ e) ⊓ (f ⊓ g ⊓ ((b ⊓ a) ⊓ c)) ≤ a :=

by { tidy_context, assumption }

/- Goal state before ‵assumption‵:

[...]

H_right_right_left_left : Γ ≤ b,

H_right_right_left_right : Γ ≤ a

⊢ Γ ≤ a -/

In this example, tidy_context combines an application of
poset_yoneda with a call to the simplifier to split hypotheses
of the form Γ ≤ a1 ⊓ a2 ⊓ ... a𝑛 into Γ ≤ a1, Γ ≤ a2,

..., Γ ≤ a𝑛 .
With more sophisticated tricks, such as coercing assump-

tions of the form (Γ ≤ a =⇒ b) to functions Γ ≤ a → Γ ≤
b, automated propagation of change-of-variables (“context-
specialization”, see [18] for more details), and automatically
casing on disjunctions Γ ≤ a ⊔ b, it is even possible to write
a Boolean-valued tableaux prover bv_tauto:

example {a b c : B} :

(a =⇒ b) ⊓ (b =⇒ c) ≤ a =⇒ c :=

by { tidy_context, bv_tauto }

Compare this with a more conventional proof, where we
even have the deduction theorem and modus ponens avail-
able as lemmas:

example {𝛽 : Type∗} [complete_boolean_algebra 𝛽]

{a b c : 𝛽} :

(a =⇒ b) ⊓ (b =⇒ c) ≤ a =⇒ c :=

begin

rw [← deduction, inf_comm, ← inf_assoc],

transitivity b ⊓ (b =⇒ c),

{ refine le_inf _ _,

{ apply inf_le_left_of_le, rw inf_comm,

apply mp },

{ apply inf_le_right_of_le, refl }},

{ rw inf_comm, apply mp }

end

It would have been possible to go further and even write
a custom tactic state, as was done for temporal logic in Unit-
B [22] or for Lean’s SMT-mode framework, such that the
machinery for handling the ambient context Γ is completely
hidden. However, we judged the benefits of this to be mostly
cosmetic, and we leave more sophisticated implementations
for future work.

6.2 Boolean-valued Equality Reasoning
Congruence Closure on Quotient Types Another bene-
fit of applying poset_yoneda and using context variables Γ
throughout the formalization is that this approach exposes
a canonical poset of setoids on bSet B induced by B-valued
equality: for every Γ : B the relation _ 𝑥 𝑦, Γ ≤ 𝑥 =B 𝑦 is an
equivalence relation on bSet B.

Since Lean natively supports quotient types, then as soon
as the only task remaining is to perform equality reasoning,
we can quotient by the appropriate setoid and simply call
cc; this is easy to automate with a custom tactic bv_cc. We
can add support for any predicate satisfying an appropriate
B-valued congruence lemma, although we currently add
support for individual predicates by hand:

example {x1 y1 x2 y2 : bSet B} {Γ}

(H1 : Γ ≤ x1 ∈B y1) (H2 : Γ ≤ x1 =B x2)

(H2 : Γ ≤ y1 =B y2) : Γ ≤ x2 ∈B y2 := by bv_cc

Discharging Congruence Lemmas Rewriting along a B-
valued equality is the same as rewriting in the appropriate
setoid parametrized by the current context Γ, so that the mo-
tive must satisfy an appropriate congruence lemma h_congr

with respect to the equivalence relation:

lemma bv_rw {x y : bSet B} {Γ : B}

(H : Γ ≤ x =B y) {𝜑 : bSet B → B}

{h_congr : ∀ x y, x =B y ⊓ 𝜑 x ≤ 𝜑 y}

{H_new : Γ ≤ 𝜑 y} : Γ ≤ 𝜑 x

We alias the type of h_congr, and add a database of @[simp]
lemmas expressing that congruence lemmas are preserved
by first-order logical operations:

def B_ext (𝜑 : bSet B → B) : Prop :=

∀ x y, x =B y ⊓ 𝜑 x ≤ 𝜑 y

@[simp] lemma B_ext_infi {]} {𝜑 :] → (bSet B → B)}

{h : ∀ i, B_ext (𝜑 i)} : B_ext (_ x,
d
i, 𝜑 i x)

Furthermore, simp is able to handle recursive applications of
these lemmas on its own, allowing most congruence lemma
proof obligations to be automatically discharged:

example {w : bSet B} :

(let 𝜑 := _ x,
d

z, z ∈B w ⊓ z ⊆B x ⊓ x ⊆B z

in B_ext 𝜑) := by simp

7 Conclusions and Future Work
Interestingly, we never used transfinite recursion for devel-
oping elementary set theory in pSet and bSet B. Indeed,
the prevalence of transfinite recursion in traditional presen-
tations of set theory is only a consequence of the use of
transfinite recursion in the traditional definitions of 𝑉 and
𝑉 B. By instead encoding 𝑉 and 𝑉 B as inductive types which
expose ∈-induction as their native induction principle, we
completely eliminate transfinite induction from this part of
our formalization.
Our consistency proof of CH is very different from the

traditional proof, due to Gödel, which shows that the con-
structible universe L satisfies GCH. An obvious path to con-
structing L is to define the definable powerset operation with
an inductive predicate on pSet whose constructors encode
the nine Gödel operations, and to then build the constructible

A Formal Proof of the Independence of the Continuum Hypothesis CPP ’20, January 20–21, 2020, New Orleans, LA, USA

hierarchy by transfinite recursion. It is interesting to con-
sider whether there is a definition of L in the same spirit as
pSet which completely avoids transfinite induction.

We also want to formalize the conservativity of ZFC over
the usual presentation in the language {∈}, by proving more
generally that extending a language with definable function
symbols is conservative. Furthermore, while formulas with
de Bruijn indices enjoy pleasant theoretical properties, they
are difficult to write and debug by hand. It should be possible
with Lean’s metaprogramming to write a custom parser from
formulas with named variables.
Although our custom automation saved a considerable

amount of work, much of it is only an approximation to
a more principled approach by reflection. The natural de-
duction and equality reasoning tactics in Section 6.1 and
Section 6.2 make it easier to manually replay a first-order
proof of a theorem of ZFC in bSet B, but the Boolean-valued
soundness theorem automatically performs this replay for a
deeply-embedded first-order proof tree. Ideally, automation
would reify a B-valued goal to the corresponding first-order
statement, discharge it by an ATP, encode the solution in
our deeply-embedded proof system, then apply soundness.
Alternately, one could perform proof transfer via the com-
pleteness theorem, proving a first-order goal in an arbitrary
ordinary model of ZFC first, then applying B-valued sound-
ness to the proof tree gotten by completeness. The advantage
to this approach is that a proof would only be computed once,
then reused in any model, ordinary or B-valued, whereas in
our formalization, we occasionally had to prove the same
statement separately in pSet and bSet B.

Besides the construction of L, the consistency of GCH can
also be shown by an iterated forcing argument. Our current
implementation of forcing should extend without too much
difficulty to iterated forcing with Boolean-valued models.
There are also many generalizations of the consistency of
¬CH. An interesting challenge could be Easton’s theorem,
which states that on regular cardinals the function ^ ↦→ 2^
can be any monotone function not contradicting König’s
Theorem (̂ < cf (2^)) [11].

Our work only marks the beginning of an integration of
formal methods with modern set theory. Since Cohen, in-
creasingly sophisticated forcing arguments have been used
to produce a vast hierarchy of independence and relative
consistency results. The challenge to proof engineers is to
develop libraries and automation that can uniformly han-
dle them, so that the manipulation of forcing notions and
forcing extensions in a proof assistant becomes as routine
as manipulating objects in an algebraic hierarchy is today.
One place to start would be to develop a good interface for
forcing with posets, and for transferring arguments along
the equivalence to Boolean-valued models. One could de-
velop a typeclass hierarchy of combinatorial conditions on
forcing notions, and similarly for the relative consistency
strengths of extensions to ZFC. As the next challenge to

formalizers, we propose the classical result of Shelah [42]
on the independence of Whitehead’s problem, the proof of
which combines the consistency of the ZFC + (V = L) with
the consistency of Martin’s axiom [28] over ZFC + ¬CH to
resolve a conjecture in abstract algebra.

Acknowledgments
We thank the members of the CMU-Pitt Lean group, partic-
ularly Simon Hudon, Jeremy Avigad, Mario Carneiro, Reid
Barton, and Tom Hales for their feedback and suggestions;
we are also grateful to Dana Scott and John Bell for their
advice and correspondence.
The authors gratefully acknowledge the support by the

Alfred P. Sloan Foundation, Grant No. G-2018-10067.

References
[1] Peter Aczel. 1978. The type theoretic interpretation of constructive

set theory. In Logic Colloquium, Vol. 77. 55–66.
[2] Peter Aczel. 1982. The type theoretic interpretation of constructive

set theory: choice principles. In Studies in Logic and the Foundations
of Mathematics. Vol. 110. Elsevier, 1–40.

[3] Peter Aczel. 1986. The type theoretic interpretation of constructive set
theory: inductive definitions. In Studies in Logic and the Foundations
of Mathematics. Vol. 114. Elsevier, 17–49.

[4] John L Bell. 2011. Set theory: Boolean-valued models and independence
proofs. Vol. 47. Oxford University Press.

[5] Stefan Berghofer. 2007. First-Order Logic According to Fitting. Archive
of Formal Proofs (Aug. 2007). http://isa-afp.org/entries/FOL-Fitting.
html, Formal proof development.

[6] Georg Cantor. 1878. Ein Beitrag zur Mannigfaltigkeitslehre. Journal
für die reine und angewandte Mathematik 84 (1878), 242–258.

[7] Mario Carneiro. 2019. The type theory of Lean. (2019). In preparation
(https://github.com/digama0/lean-type-theory/releases).

[8] Paul J Cohen. 1964. The independence of the continuum hypothesis.
Proceedings of the National Academy of Sciences 50, 6 (1964), 1143–1148.

[9] Paul J Cohen. 1964. The independence of the continuum hypothesis,
II. Proceedings of the National Academy of Sciences 51, 1 (1964), 105.

[10] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. 2015. The Lean Theorem Prover (System
Description). In Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings (Lecture Notes in Computer Science), Amy P. Felty and Aart
Middeldorp (Eds.), Vol. 9195. Springer, 378–388. https://doi.org/10.
1007/978-3-319-21401-6_26

[11] William B Easton. 1970. Powers of regular cardinals. Annals of mathe-
matical logic 1, 2 (1970), 139–178.

[12] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. 2017. AMetaprogramming Framework for Formal
Verification. Proc. ACM Program. Lang. 1, ICFP, Article 34 (Aug. 2017),
29 pages. https://doi.org/10.1145/3110278

[13] Steven Givant and Paul Halmos. 2008. Introduction to Boolean algebras.
Springer Science & Business Media.

[14] Kurt Gödel. 1938. The consistency of the axiom of choice and of
the generalized continuum-hypothesis. Proceedings of the National
Academy of Sciences 24, 12 (1938), 556–557.

[15] Emmanuel Gunther, Miguel Pagano, and Pedro Sánchez Terraf. 2018.
First steps towards a formalization of Forcing. CoRR abs/1807.05174
(2018). arXiv:1807.05174 http://arxiv.org/abs/1807.05174

[16] Emmanuel Gunther, Miguel Pagano, and Pedro Sánchez Terraf.
2019. Mechanization of Separation in Generic Extensions. CoRR

http://isa-afp.org/entries/FOL-Fitting.html
http://isa-afp.org/entries/FOL-Fitting.html
https://github.com/digama0/lean-type-theory/releases
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/3110278
http://arxiv.org/abs/1807.05174
http://arxiv.org/abs/1807.05174

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Jesse Michael Han and Floris van Doorn

abs/1901.03313 (2019). arXiv:1901.03313 http://arxiv.org/abs/1901.
03313

[17] Joel David Hamkins and Daniel Evan Seabold. 2012. Well-founded
Boolean ultrapowers as large cardinal embeddings. arXiv preprint
arXiv:1206.6075 (2012).

[18] Jesse Michael Han and Floris van Doorn. 2019. A Formalization
of Forcing and the Unprovability of the Continuum Hypothesis. In
10th International Conference on Interactive Theorem Proving, ITP
2019, September 9-12, 2019, Portland, OR, USA. 19:1–19:19. https:
//doi.org/10.4230/LIPIcs.ITP.2019.19

[19] John Harrison. 1998. Formalizing Basic First Order Model Theory.
In Theorem Proving in Higher Order Logics, 11th International Con-
ference, TPHOLs’98, Canberra, Australia, September 27 - October 1,
1998, Proceedings (Lecture Notes in Computer Science), Jim Grundy
and Malcolm C. Newey (Eds.), Vol. 1479. Springer, 153–170. https:
//doi.org/10.1007/BFb0055135

[20] John Harrison. 2009. Handbook of Practical Logic and Automated
Reasoning. Cambridge University Press.

[21] Friedrich Hartogs. 1915. Über das Problem der Wohlordnung. Math.
Ann. 76, 4 (1915), 438–443.

[22] Simon Hudon, Thai Son Hoang, and Jonathan S. Ostroff. 2015. The
Unit-B method: refinement guided by progress concerns. Software &
Systems Modeling 15 (2015), 1091–1116.

[23] Joe Hurd and Thomas F. Melham (Eds.). 2005. Theorem Proving in
Higher Order Logics, 18th International Conference, TPHOLs 2005, Ox-
ford, UK, August 22-25, 2005, Proceedings. Lecture Notes in Computer
Science, Vol. 3603. Springer. https://doi.org/10.1007/11541868

[24] Danko Ilik. 2010. Constructive completeness proofs and delimited control.
Ph.D. Dissertation. Ecole Polytechnique X.

[25] Thomas Jech. 2013. Set theory. Springer Science & Business Media.
[26] Kenneth Kunen. 1980. Set theory. Studies in Logic and the Foundations

of Mathematics, Vol. 102. North-Holland Publishing Co., Amsterdam-
New York. xvi+313 pages.

[27] Yu I Manin. 2009. A course in mathematical logic for mathematicians.
Vol. 53. Springer Science & Business Media.

[28] Donald A Martin and Robert M Solovay. 1970. Internal Cohen exten-
sions. Annals of Mathematical Logic 2, 2 (1970), 143–178.

[29] The mathlib Community. 2019. The Lean mathematical library. arXiv
e-prints, Article arXiv:1910.09336 (Oct 2019), arXiv:1910.09336 pages.
arXiv:cs.LO/1910.09336

[30] Justin Tatch Moore. 2019. The method of forcing. arXiv preprint
arXiv:1902.03235 (2019).

[31] Russell O’Connor. 2005. Essential Incompleteness of Arithmetic Veri-
fied by Coq, See [23], 245–260. https://doi.org/10.1007/11541868_16

[32] Lawrence C. Paulson. 1993. Set Theory for Verification: I. From
Foundations to Functions. J. Autom. Reasoning 11, 3 (1993), 353–389.
https://doi.org/10.1007/BF00881873

[33] Lawrence C. Paulson. 2002. The Reflection Theorem: A Study in Meta-
theoretic Reasoning. In Automated Deduction - CADE-18, 18th Interna-
tional Conference on Automated Deduction, Copenhagen, Denmark, July
27-30, 2002, Proceedings (Lecture Notes in Computer Science), Andrei
Voronkov (Ed.), Vol. 2392. Springer, 377–391. https://doi.org/10.1007/3-
540-45620-1_31

[34] Lawrence C. Paulson. 2008. The Relative Consistency of the Axiom of
Choice - Mechanized Using Isabelle/ZF. In Logic and Theory of Algo-
rithms, 4th Conference on Computability in Europe, CiE 2008, Athens,
Greece, June 15-20, 2008, Proceedings (Lecture Notes in Computer Sci-
ence), Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe
(Eds.), Vol. 5028. Springer, 486–490. https://doi.org/10.1007/978-3-540-
69407-6_52

[35] Lawrence C. Paulson and Krzysztof Grabczewski. 1996. Mechanizing
Set Theory. J. Autom. Reasoning 17, 3 (1996), 291–323. https://doi.org/
10.1007/BF00283132

[36] TomRidge and JamesMargetson. 2005. AMechanically Verified, Sound
and Complete Theorem Prover for First Order Logic, See [23], 294–309.
https://doi.org/10.1007/11541868_19

[37] Anders Schlichtkrull. 2018. Formalization of logic in the Isabelle proof
assistant. Ph.D. Dissertation. Technical University of Denmark.

[38] Dana Scott. 1967. A Proof of the Independence of the Continuum
Hypothesis. Theory of Computing Systems 1, 2 (1967), 89–111.

[39] Dana Scott. 2008. The Algebraic Intepretation of Quantifiers: intu-
itionistic and classical. Andrzej Mostowski and Foundational Studies
(2008), 289–312.

[40] Dana Scott and Robert Solovay. 1967. Boolean algebras and forcing.
(1967). Unpublished manuscript.

[41] Natarajan Shankar. 1997. Metamathematics, machines and Gödel’s
proof. Vol. 38. Cambridge University Press.

[42] Saharon Shelah. 1974. Infinite abelian groups, Whitehead problem
and some constructions. Israel Journal of Mathematics 18, 3 (1974),
243–256.

[43] Joseph R Shoenfield. 1971. Unramified forcing. In Axiomatic set theory,
Vol. 13. AMS Providence, RI, 357–381.

[44] Sebastian Ullrich and Leonardo de Moura. 2019. Counting Immutable
Beans: Reference Counting Optimized for Purely Functional Program-
ming. arXiv:cs.PL/1908.05647

[45] Nik Weaver. 2014. Forcing for mathematicians. World Scientific.
[46] Benjamin Werner. 1997. Sets in types, types in sets. In International

Symposium on Theoretical Aspects of Computer Software. Springer, 530–
546.

[47] Freek Wiedijk. [n. d.]. Formalizing 100 theorems. http://www.cs.ru.
nl/~freek/100/

http://arxiv.org/abs/1901.03313
http://arxiv.org/abs/1901.03313
http://arxiv.org/abs/1901.03313
https://doi.org/10.4230/LIPIcs.ITP.2019.19
https://doi.org/10.4230/LIPIcs.ITP.2019.19
https://doi.org/10.1007/BFb0055135
https://doi.org/10.1007/BFb0055135
https://doi.org/10.1007/11541868
http://arxiv.org/abs/cs.LO/1910.09336
https://doi.org/10.1007/11541868_16
https://doi.org/10.1007/BF00881873
https://doi.org/10.1007/3-540-45620-1_31
https://doi.org/10.1007/3-540-45620-1_31
https://doi.org/10.1007/978-3-540-69407-6_52
https://doi.org/10.1007/978-3-540-69407-6_52
https://doi.org/10.1007/BF00283132
https://doi.org/10.1007/BF00283132
https://doi.org/10.1007/11541868_19
http://arxiv.org/abs/cs.PL/1908.05647
http://www.cs.ru.nl/~freek/100/
http://www.cs.ru.nl/~freek/100/

	Abstract
	1 Introduction
	1.1 Proof Outline

	2 First-Order Logic
	2.1 Terms, Formulas and Proofs
	2.2 ZFC

	3 Boolean-Valued Semantics
	4 Boolean-Valued Models of Set Theory
	4.1 The Aczel Encoding
	4.2 Boolean-Valued Sets
	4.3 The Fundamental Theorem of Forcing
	4.4 Ordinals

	5 Forcing
	5.1 Regular Open Algebras
	5.2 Cohen Forcing
	5.3 Collapse Forcing
	5.4 Construction of aleph 1
	5.5 Function Reflection
	5.6 The Independence of CH

	6 Automation and Metaprogramming
	6.1 Simulating Natural Deduction Proofs in Complete Boolean Algebras
	6.2 Boolean-valued Equality Reasoning

	7 Conclusions and Future Work
	Acknowledgments
	References

